High Performance Computing for complex fluids simulation. Towards Blood Flow modeling. A FEEL++ Framework

CASTS-LJLL Workshop on Applied Mathematics and Mathematical Sciences

TAIPEI, May 26th-29th 2014

Mourad Ismail

Mourad.Ismail@ujf-grenoble.fr

www-lsp.ujf-grenoble.fr/equipe/dyfcom/ismail Grenoble University, France

Image: A matrix

HPC for Blood Flow Simulation

Liff

TAIPEI 26/5/2014 1

M. Ismail (LIPhy/LJK)

Long term goals

Understand the physical mechanisms to some physio-cardiovascular diseases

Atherosclerosis, Stenosis, Drepanocytosis (Sickle Cells Anemia), ...

Blood characteristics

- RBCs are predominant from rheological point of view
- Blood \simeq plasma (Newtonian fluid) + RBCs
- A dense suspension of micron sized RBCs
- Arterial Elasticity
 - Support the pressure of blood flux
 - Regulate the pulse of the cardiac flow (large Red blo arteries)

HPC for Blood Flow Simulation

Liff

Challenges

- How to take into account the presence of RBCs? which models?
- Complex interactions at different levels :
 - Blood/Vessels
 - Plasma/RBCs
 - RBCs/RBCs
- Different kinds of deformations and different scales
 - Dynamic of RBCs in arteries
 - Deformation of RBCs in capillaries

Collaborations and Funding

VivaBrain¹ and FEEL++² communities

- S. Bertoluzza (Italy)
- V. Chabannes (PhD) LIPhy/LJK
- G. Coupier (LIPhy)
- V. Doyeux (PhD) LIPhy
- Y. Guyot (former M2 Student) LIPhy
- T. Podgorski (LIPhy)
- S. Priem (PhD Student) LIPhy/LJK
- C. Prud'homme (Strasbourg)

- V. Hubert (Strasbourg)
- G. Pena (Portugal)
- S. Salmon (Reims)
- M. Szopos (Strasbourg)
- R. Tarabay (PhD Student)
- Computer scientists
- Radiologists and Hospital Doctors

Funding

- ANR MOSICOB (2008–2012)
- ANR VivaBrain (2013–2017) ANR-12-MONU-0010

....

PHC-ORCHID

¹http://vivabrain.fr
²http://www.feelpp.org

Outline

FEEL++

- 2 Microscopic Scale Bubbles and Drops Back to vesicles
- 3 Macroscopic Scale
- 4 Conclusions

M. Ismail (LIPhy/LJK)

HPC for Blood Flow Simulation

■ ト ■ つへへ TAIPEI 26/5/2014 5

Some words on FEEL++

Finite Element Embedded Library in C++

- A Domain Specific Language for PDEs embedded in C++ providing a syntax very close to the mathematical language.
- Supports generalized arbitrary order Galerkin methods (cG, dG) in 1D, 2D and 3D
- Supports simplex, hypercube, high order meshes and geometries
- Supports seamless parallel computing and seamless interpolation operator
- Supports large scale parallel linear and non-linear solvers (PETSc/SLEPc)

Architecture

HPC for Blood Flow Simulation

P

HPC FEEL++ Strategy. Seamless parallelization

Hybrid architectures

- many nodes, many cores, hybrid nodes
- MPI, multi-threads, GPU

MPI implementation :

- mesh partitioning
- dof table partitioning
- PETSc interface

イロト イヨト イヨト イヨト

- 2

- The parallelism is completely transparent (implicit use)
- Parallelism can be also made explicit (control communications)

```
A simple Example
                               #include <feel/feel.hpp>
                               int main(int argc, char** argv)
                                 using namespace Feel;
                                 Environment env (_argc=argc, _argv=argv,
                                                        _desc=feel_options());
                                 auto mesh = loadMesh(_mesh=new Mesh<Simplex<3> >);
                                 auto Vh = Pch<2>( mesh );
                                 auto u = Vh->element();
                                 auto v = Vh->element();
   Find u s.t.
                                 auto f = cst(1.0);
 \begin{cases} -\Delta u = f \text{ in } \Omega \\ u = 0 \text{ on } \partial \Omega \end{cases}
                                 // Linear Form : \ell(v) = \int_{\Omega} fv
                                 auto l = form1(_test=Vh);
                                 1 = integrate(_range=elements(mesh),
                                                    _expr=f*id(v));
             ↥
                                 // Bilinear Form : a(u, v) = \int_{\Omega} \nabla u \cdot \nabla v
                                 auto a = form2( trial=Vh, test=Vh);
                                 a = integrate( range=elements(mesh),
                                                    expr=inner(gradt(u), grad(v)));
\begin{cases} \mathsf{Find} \ u \in V \text{ s.t. } \forall v \in V \\ \int_{\Omega} \nabla u \cdot \nabla v = \int_{\Omega} fv \end{cases}
                                 // Boundary Conditions : u = 0 on \partial \Omega
                                 a+=on (_range=boundaryfaces (mesh),
                                         _rhs=l,_element=u,
                                         expr=cst(0.) );
                                 // Linear System Resolution : AU = F
                                 a.solve(_rhs=l,_solution=u);
                                 auto e = exporter( mesh=mesh );
                                 e->add( "u", u); e->save();
```

ヘロン 人間と 人間と 人間と

э

Some success Stories

Consortium (Strasbourg University, UJF, University of Coimbra, CNRS and CNR)

- About 20 developers. Project leader: C. Prud'homme.
- Mesochallenge equip@meso 2013 prize for the project "HPC for Blood Flow Simulations in Complex Geometries"
- An article in HPCMagazine was published about this project
- 60 millions of core-hours computing (PRACE European call 2012/2013)
- 30 millions of core-hours computing (PRACE European call 2013/2014) in progress
- Best students' posters in various workshops

Feel++: Communication Tools

- Feel++ website:
 - http://www.feelpp.org
- Feel++ Git Repo: https://github.com/feelpp/feelpp.git
- Feel++ @ Google+: https:

//plus.google.com/u/0/communities/104696212880173187475

- Feel++ Google Groups: http://groups.feelpp.org
- Feel++ Publications: http://www.feelpp.org/publications
- Feel++ @ YouTube (videos):

http://www.youtube.com/channel/UCnLX6kyV8j644isqhMpUN4Q

Feel++ @ Twitter (commits, youtube videos): https://twitter.com/feelpp

Outline

FEEL++

- 2 Microscopic Scale Bubbles and Drops Back to vesicles
- 3 Macroscopic Scale
- 4 Conclusions

M. Ismail (LIPhy/LJK)

HPC for Blood Flow Simulation

Liff

LABORATOR

・ロト ・回ト ・ヨト ・ヨト

TAIPEI 26/5/2014 12

Vesicle : A Simple RBC Model I

- Unilamellar vesicle : lipid bi-layer membrane
- Easy to produce in the laboratory
- Imitate some behaviors of red blood cells
 - passive mechanical properties
- Properties of the membrane :
 - Nonporous : Conservation of inner fluid's Volume
 - Non extensible : Conservation of the membrane surface (perimeter in 2D)

A D > A B > A B >

• Bending Energy (Helfrich energy)

M. Ismail (LIPhy/LJK)

Vesicle under shear flow. Tank treading motion

Small Viscosity Contrast Image Tank-Treading motion

- vesicle reaches a stationary angle
- rotation of the membrane

Experimental observation of a Tank-Treading motion [T. Podgorski]

M. Ismail (LIPhy/LJK)

HPC for Blood Flow Simulation

L.

<ロト <回 > < 回 > < 回 > < 回 >

Vesicle under shear flow. Tumbling motion

High viscosity ratio Tumbling motion

- vesicle in quasi solid rotation
- rotation velocity depends on the angle

Experimental observation of a tumbling motion [T. Podgorski]

HPC for Blood Flow Simulation

A D > A B > A B >

Level set method

[V. Doyeux PhD Thesis]

・ロ・・ 日本・ ・ 回・

 $\phi(\mathbf{x})$ used to track an interface

$$\phi(\mathbf{x}) = \begin{cases} dist(\mathbf{x}, \Gamma) & \mathbf{x} \in \Omega_1, \\ 0 & \mathbf{x} \in \Gamma, \\ -dist(\mathbf{x}, \Gamma) & \mathbf{x} \in \Omega_2, \end{cases}$$

Advection by a divergence-free velocity u

$$\frac{D\phi}{Dt} = 0 \qquad \frac{\partial\phi}{\partial t} + \boldsymbol{u} \cdot \nabla\phi = 0$$

HPC for Blood Flow Simulation

Liff

LABORATOR

< 3

Coupling with Navier Stokes equations

$$\rho_{\phi} \left(\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} \right) - \nabla \cdot (2\mu_{\phi} D(\boldsymbol{u})) + \nabla \boldsymbol{p} = \boldsymbol{F}_{\phi}$$
$$\nabla \cdot \boldsymbol{u} = \boldsymbol{0}$$
$$\frac{\partial \phi}{\partial t} + \boldsymbol{u} \cdot \nabla \phi = \boldsymbol{0}$$

- Level set advected by solution of Navier Stokes equations
- Fluid quantities depend on level set function ρ_{ϕ} , μ_{ϕ} , F_{ϕ}

$$\begin{array}{rcl}
\rho_{\phi} &=& \rho^{-} + (\rho^{+} - \rho^{-}) H_{\epsilon}(\phi) \\
\mu_{\phi} &=& \mu^{-} + (\mu^{+} - \rho^{-}) H_{\epsilon}(\phi) \\
\boldsymbol{F}_{\phi} &=& \int_{\Gamma} \boldsymbol{F}_{s} = \int_{\Omega} \boldsymbol{F}_{s} \delta_{\epsilon}(\phi)
\end{array}$$

M. Ismail (LIPhy/LJK)

HPC for Blood Flow Simulation

TAIPEI 26/5/2014 17

< 3 >

・ロ・・ 日・ ・ 日・

Variational formulation

find $(\boldsymbol{u}, \boldsymbol{p}, \phi) \in H^1(\Omega)^2 \times L^2(\Omega) \times H^1(\Omega)$ which verify $\forall (\boldsymbol{v}, q, \psi) \in H^1_0(\Omega)^2 \times L^2_0(\Omega) \times H^1(\Omega)$:

$$\begin{split} \rho_{\phi} \int_{\Omega} \left(\frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \nabla) \boldsymbol{u} \right) \cdot \boldsymbol{v} + \mu_{\phi} \int_{\Omega_{f}} D(\boldsymbol{u}) : D(\boldsymbol{v}) & - \int_{\Omega} p \nabla \cdot \boldsymbol{v} \\ &= \int_{\Omega} \boldsymbol{F}_{\phi} \cdot \boldsymbol{v}, \\ \int_{\Omega_{f}} q \nabla \cdot \boldsymbol{u} &= 0, \\ \int_{\Omega} \partial_{t} \phi \psi + \int_{\Omega} (\boldsymbol{u} \cdot \nabla \phi) \psi + \int_{\{\Omega \text{ or } \Omega_{f}^{i}\}} \boldsymbol{S}(\phi, \psi) &= 0. \end{split}$$

with $S(\phi, \psi)$ a stabilization term (SUPG, GLS, SGS, CIP). Solved by FEM and using FEEL++ library

HPC for Blood Flow Simulation

A D > A B > A B >

Rising of a bubble in a viscous fluids. Benchmark from : [Hysing et al. (2009)]

External forces added to Navier Stokes equation

- Gravity : $\boldsymbol{F}_g = \rho_{\phi} \boldsymbol{g}$
- Surface tension : $\boldsymbol{F}_{st} = \int_{\Gamma} \sigma \kappa \boldsymbol{n}$

M. Ismail (LIPhy/LJK)

Groups having done the benchmark

Group and affiliation	Code/Method
TU Dortmount, Inst. of Applied Math.	TP2D
S. Turek, D. Kuzmin, S. Hysing	FEM-Level Set Q_1 - $Q_0 Q_1$
EPFL Lausanne, Inst. of Analysis ans Sci. Comp. <i>E.Burman, N.Parolini</i>	FreeLIFE FEM-Level Set \mathbb{P}_2 - $\mathbb{P}_1 \mathbb{P}_2$
Uni. Magdeburg, inst. of Analysis and Num. Math.	MooNMD
L. Tobiska, S. Ganesan	FEM-ALE
Univ. Joseph Fourier, LIPhy.	Feel++
V.Doyeux, Y.Guyot, V.Chabannes	FEM-Level Set
C.Prud'homme, M.Ismail	\mathbb{P}_2 - $\mathbb{P}_1 \mathbb{P}_1$

High surface tension : ellipsoidal bubble

P

Low surface tension : squirted bubble

HPC for Blood Flow Simulation

P

Handling many interfaces

Implicit handeling of many interfaces and topology changes Many falling drops

Many rising bubbles

Dam Break

A D > A B > A B >

M. Ismail (LIPhy/LJK)

HPC for Blood Flow Simulation

L.

TAIPEI 26/5/2014 23

From 2D to 3D

[S. Priem PhD Thesis]

M. Ismail (LIPhy/LJK)

HPC for Blood Flow Simulation

TAIPEI 26/5/2014 24

The case of vesicles [V. Doyeux PhD thesis]

[JCAM 246, pp. 251-259 (2013)]

Curvature force derived from Helfrich energy

$$E_{h} = \int_{\Gamma} \frac{k_{B}}{2} \kappa^{2}$$
$$F_{b} = \int_{\Gamma} \frac{k_{B}}{2} \left[\frac{\kappa^{3}}{2} + t \cdot \nabla(t \cdot \nabla \kappa) \right] n$$

Membrane inextensibility

Add a Lagrange multiplier constraint

 $\nabla_{s} \cdot \boldsymbol{u} = \nabla \cdot \boldsymbol{u} - (\nabla \boldsymbol{u} \cdot \boldsymbol{n}) \cdot \boldsymbol{n} = 0.$ [Laadhari PhD thesis (2011)]

HPC for Blood Flow Simulation

(日)

Variational formulation on Stokes equation

$$\begin{aligned} -\nabla \cdot (2\mu_{\phi} D(\boldsymbol{u})) + \nabla \boldsymbol{p} &= \boldsymbol{F}_{\phi} \text{ in } \Omega \\ \nabla \cdot \boldsymbol{u} &= 0 \text{ in } \Omega \\ \nabla_{s} \cdot \boldsymbol{u} &= 0 \text{ on } \Gamma \end{aligned}$$

find $(\boldsymbol{u}, \boldsymbol{p}, \lambda) \in H^1(\Omega)^2 \times L^2(\Omega) \times H^{\frac{1}{2}}(\Gamma)$ which verify $\forall (\boldsymbol{v}, \boldsymbol{q}, \nu) \in H^1_0(\Omega)^2 \times L^2_0(\Omega) \times H^{\frac{1}{2}}(\Gamma)$:

$$\mu_{\phi} \int_{\Omega_{f}} D(\boldsymbol{u}) : D(\boldsymbol{v}) - \int_{\Omega} p \nabla \cdot \boldsymbol{v} + \int_{\Gamma} \lambda \nabla_{s} \cdot \boldsymbol{v} = \int_{\Omega} \boldsymbol{F}_{\phi} \cdot \boldsymbol{v}$$
$$\int_{\Omega} q \nabla \cdot \boldsymbol{u} = 0$$
$$\int_{\Gamma} \nu \nabla_{s} \cdot \boldsymbol{u} = 0$$

M. Ismail (LIPhy/LJK)

HPC for Blood Flow Simulation

Lin

TAIPEI 26/5/2014 26

Equilibrium shapes

reduce area $\alpha = \frac{\text{area vesicle}}{\text{area circle with same perimeter}}$

CITS

Comparison with another model

Comparison with boundary integral method from [Kaoui et al. 2011]

- Reduce area = 1
- Reduce area = 1

- Reduce area = 0.90
- •• Reduce area = 0.93

Comparison with another model

Comparison with boundary integral method from [Kaoui et al. 2011]

- Reduce area = 0.80
- Reduce area = 0.78

- U
- Reduce area = 0.60
- Reduce area = 0.61

A D > A B > A B >

HPC for Blood Flow Simulation

L.

Tank treading motion

Angle vs. time for different α

<ロト (四) (注) (日)

Liff

JAN DUITZIAN

M. Ismail (LIPhy/LJK)

Tumbling motion

M. Ismail (LIPhy/LJK)

HPC for Blood Flow Simulation

◆ E → E → Q へ TAIPEI 26/5/2014 30

Homogeneous and Heterogeneous Suspensions of Vesicles in a Bifurcation [V. Doyeux PhD Thesis]

JAN KUNTZPAN

L.

M. Ismail (LIPhy/LJK)

Outline

FEEL++

2 Microscopic Scale Bubbles and Drops Back to vesicles

3 Macroscopic Scale

4 Conclusions

M. Ismail (LIPhy/LJK)

HPC for Blood Flow Simulation

TAIPEI 26/5/2014 32

ANR VivaBrain

http://vivabrain.fr

SQA

VivaBrain Tasks

M. Ismail (LIPhy/LJK)

CITS

HPC for Blood Flow Simulation

TAIPEI 26/5/2014 34

P

FSI applications and realistic geometries [V. Chabannes] Aorta

(e) Proximal pressure

Cerebral Aneurysm

Flow simulation in cerebrovenous network

(a) Pressure

(b) Streamlines

Stokes

- 29 inlets and 2 outlets.
- P2P1 Approximation
- 10 millions DOF

Prace/SuperMuC Computers

nProc	Assembly (t ₁)	Resolution (t ₂)	total $(t_1 + t_2)$	nlterations
512	2.15219	45.4506	47.6028	295
1024	1.33274	17.9034	19.2361	377
2048	1.06893	14.6693	15.7382	379

[ESAIM: Proc (2013)]

<ロ> (四) (四) (三) (三) (三) (三)

Flow simulation in cerebrovenous network

Conclusions

Outline

FEEL++

2 Microscopic Scale Bubbles and Drops Back to vesicles

3 Macroscopic Scale

4 Conclusions

M. Ismail (LIPhy/LJK)

HPC for Blood Flow Simulation

TAIPEI 26/5/2014 38

Conclusions

- Unified framework for two-fluid flows (2D and 3D using FEEL++). Application to bubbles, drops and vesicles
- Validation using benchmarks and physical experiments
- ✓ Still some works to handle real applications

A D > A B > A B >

http://www.feelpp.org

HPC for Blood Flow Simulation

LIP?